Skip to main content

How old the universe is 13.8 Billion or a Shocking Twist?

spacelia | spacerium

For decades, science has confidently placed the universe's age around 13.8 billion years old. This number, etched in textbooks and astronomy discussions, signifies the vast expanse of time since the Big Bang. But a recent study (July 2023) throws a curveball, proposing a much older universe – a whopping 26.7 billion years! So, what's the real story? Let's dive into the scientific records and weigh the evidence.

The Well-Established 13.8 Billion Years:

Our current understanding of the universe's age hinges on two primary methods:

  • Cosmic Microwave Background (CMB) Radiation: This faint afterglow of the Big Bang holds the imprint of the universe's very early stages. By meticulously analyzing the CMB with missions like Planck, scientists can calculate the universe's age based on its expansion and cooling. This method consistently yields an age around 13.8 billion years.
  • Hubble's Law and Oldest Stars: Hubble's Law tells us galaxies are receding from each other, and the farther they are, the faster they move away. By measuring this expansion rate and estimating how long it would take to reach this point from a hot, dense state (the Big Bang), we reach a similar age of 13.8 billion years. Additionally, studying the ages of the oldest stars in globular clusters provides a complementary age estimate, again reinforcing the 13.8 billion year mark.

The Contender: A 26.7 Billion Year Old Universe?

A recent study by Rajendra Gupta proposes a new model that challenges the established age. This model incorporates Zwicky's tired light theory, which suggests light loses energy as it travels across vast distances, and adjusts certain cosmological constants. Based on this, the study arrives at the significantly older age of 26.7 billion years.

Why the Scientific Community is Cautious:

While the 26.7 billion year age is intriguing, there are reasons for scientific caution:

  • Deviates from Established Models: Gupta's model breaks away from the widely accepted cosmological models that have successfully explained numerous cosmic observations. These models consistently point towards the 13.8 billion year age.
  • Requires Further Validation: The new model needs rigorous testing and independent verification by other researchers. Observations from telescopes like James Webb haven't yet corroborated the model's predictions.
  • Potential Inconsistencies: If the universe is truly 26.7 billion years old, it creates inconsistencies with the ages of some stars, which appear older than the universe itself according to the new model.

Evidences:

Although there are many things whose age is more than the age of our universe, but there is one star which is very famous whose name is Methuselah which is about 14.2 billion years old.

The Verdict: Still 13.8 Billion Years Old (For Now):

The current weight of evidence strongly supports the 13.8 billion year age for the universe. The CMB, Hubble's Law, and stellar ages all paint a consistent picture. The 26.7 billion year proposal requires significant validation and reconciliation with existing observations.

The Intriguing Future:

Science thrives on challenges. Gupta's model, though currently on the fringe, prompts further exploration of cosmological phenomena. Perhaps it will lead to refinements in our understanding of the universe's expansion or light's behavior over vast distances. As telescopes like James Webb continue their observations, we may gain new insights that shed light on this cosmic mystery.

The true age of the universe might remain elusive for a while, but the scientific quest to unravel this grand question continues, pushing the boundaries of our knowledge.



Comments

Popular posts from this blog

Messier 106 : Our member of galaxies partner

Messier 106 : Our member of galaxies The universe is a vast expanse filled with wonders beyond our imagination. Among these wonders are galaxies, vast collections of stars, gas, dust, and dark matter held together by gravity. One such galaxy that captivates astronomers and stargazers alike is Messier 106, a stunning spiral galaxy located in the constellation Canes Venatici. Unveiling Messier 106: Discovered by the French astronomer Pierre Méchain in 1781, Messier 106, also known as M106 or NGC 4258, is a member of the relatively nearby Virgo Supercluster, which contains our own Milky Way galaxy. It lies approximately 22 to 25 million light-years away from Earth, making it a relatively close neighbor in astronomical terms. Messier 106 is classified as a Seyfert II galaxy, which means it has an active nucleus that emits strong radiation across the electromagnetic spectrum. This activity is believed to be fueled by a supermassive black hole at its center, which is devouring surrounding ma...

Messier 34: A Gem in the Perseus Constellation

In the vast canvas of the night sky, amidst the celestial wonders, lies Messier 34 (M34), an open star cluster also known by its New General Catalogue (NGC) designation, NGC 1039. Nestled within the boundaries of the constellation Perseus, M34 beckons astronomers and stargazers alike with its captivating beauty and scientific intrigue. Discovery and Historical Significance: Discovered by the famed French astronomer Charles Messier on August 25, 1764, M34 was cataloged as the 34th entry in Messier's renowned list of non-cometary objects. Initially described as a "cluster of small stars," Messier 34 holds a special place in astronomical history as one of the first deep-sky objects to be cataloged and studied systematically. Compactness: Messier 34 is a relatively compact open star cluster, making it a visually appealing target for amateur astronomers. Its stars are densely packed together, creating a beautiful celestial sight. Youthful Age: While many open star clusters ten...

Methuselah : The Oldest Star in the Universe

Methuselah : The Oldest Star in the Universe Introduction: In the vast expanse of the cosmos, stars hold a fascination that transcends time and space. Among them, Methuselah Star stands out as a celestial anomaly, captivating astronomers and stargazers alike. Known as the oldest star in the universe, Methuselah Star offers a glimpse into the distant past of our cosmos and challenges our understanding of stellar evolution. In this blog post, we delve into the fascinating story of Methuselah Star, exploring its origins, characteristics, and the insights it provides about the universe. Discovery and Naming: Methuselah Star, officially designated as HD 140283, was discovered in 1912 by the American astronomer Henry Norris Russell. Located in the constellation Libra, Methuselah Star initially gained attention due to its high proper motion, indicating its rapid movement across the sky relative to other stars. However, it was its estimated age that truly captured the imagination of astronomer...