Skip to main content

High-energy cosmic rays may originate within the Milky Way galaxy

 High-energy cosmic rays may originate within the Milky Way galaxy



The most energetic particles in the universe appear to emerge from sources within the Milky Way, our home galaxy.

Cosmic rays are made of subatomic particles, such as protons and electrons, whose energies span a wide spectrum. Ultra-high-energy cosmic rays easily host tens of millions of times more energy than any particle accelerator can generate on Earth, but where they come from — and precisely what accelerates them to become some of the fastest in the universe — has intrigued scientists since the discovery of these phenomena in 1962.

In the past, astronomers had managed to provide some solid evidence that cosmic rays come from sources residing outside the Milky Way. But now, a new study suggests they also originate from within the galaxy, blasting out from the leftovers of exploded stars, otherwise known as supernova remnants. 

The latest results are thanks to a sensitive, dedicated telescope mounted outside the International Space Station (ISS), which since 2015 has been struck by over seven million ultra-high-energy cosmic ray particles. The instrument, the Calorimetric Electron Telescope (or CALET), was installed on the ISS with the hopes of being a more powerful cosmic ray detector than its flagship predecessor, the Alpha Magnetic Spectrometer.

Cosmic rays are known to rapidly lose energy once they exit their sources, so scientists say the recorded high-energy rays are convincing evidence that they originated from sources nearby our solar system.

But where exactly are they coming from? The team does not know for sure yet, but have some suspicions. 

It's possible, the researchers say, that the rays emerged from at least three of 12 supernova remnants scattered around our solar system within 3,000 light-years of us. One of them could be Vela, at a little over 800 light-years away. Vela is an 11,000-year-old, well-studied remnant of an exploded star, which shone 250 times brighter than Venus when it blasted and would have been visible as a bright flash in the sky even during the daytime. This remnant is also associated with the Vela pulsar — a rapidly rotating neutron star that broke records this year, when it released the highest-energy radiation ever seen coming from its kind.

Comments

Popular posts from this blog

Messier 106 : Our member of galaxies partner

Messier 106 : Our member of galaxies The universe is a vast expanse filled with wonders beyond our imagination. Among these wonders are galaxies, vast collections of stars, gas, dust, and dark matter held together by gravity. One such galaxy that captivates astronomers and stargazers alike is Messier 106, a stunning spiral galaxy located in the constellation Canes Venatici. Unveiling Messier 106: Discovered by the French astronomer Pierre Méchain in 1781, Messier 106, also known as M106 or NGC 4258, is a member of the relatively nearby Virgo Supercluster, which contains our own Milky Way galaxy. It lies approximately 22 to 25 million light-years away from Earth, making it a relatively close neighbor in astronomical terms. Messier 106 is classified as a Seyfert II galaxy, which means it has an active nucleus that emits strong radiation across the electromagnetic spectrum. This activity is believed to be fueled by a supermassive black hole at its center, which is devouring surrounding ma...

Messier 34: A Gem in the Perseus Constellation

In the vast canvas of the night sky, amidst the celestial wonders, lies Messier 34 (M34), an open star cluster also known by its New General Catalogue (NGC) designation, NGC 1039. Nestled within the boundaries of the constellation Perseus, M34 beckons astronomers and stargazers alike with its captivating beauty and scientific intrigue. Discovery and Historical Significance: Discovered by the famed French astronomer Charles Messier on August 25, 1764, M34 was cataloged as the 34th entry in Messier's renowned list of non-cometary objects. Initially described as a "cluster of small stars," Messier 34 holds a special place in astronomical history as one of the first deep-sky objects to be cataloged and studied systematically. Compactness: Messier 34 is a relatively compact open star cluster, making it a visually appealing target for amateur astronomers. Its stars are densely packed together, creating a beautiful celestial sight. Youthful Age: While many open star clusters ten...

Methuselah : The Oldest Star in the Universe

Methuselah : The Oldest Star in the Universe Introduction: In the vast expanse of the cosmos, stars hold a fascination that transcends time and space. Among them, Methuselah Star stands out as a celestial anomaly, captivating astronomers and stargazers alike. Known as the oldest star in the universe, Methuselah Star offers a glimpse into the distant past of our cosmos and challenges our understanding of stellar evolution. In this blog post, we delve into the fascinating story of Methuselah Star, exploring its origins, characteristics, and the insights it provides about the universe. Discovery and Naming: Methuselah Star, officially designated as HD 140283, was discovered in 1912 by the American astronomer Henry Norris Russell. Located in the constellation Libra, Methuselah Star initially gained attention due to its high proper motion, indicating its rapid movement across the sky relative to other stars. However, it was its estimated age that truly captured the imagination of astronomer...